Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas

Kazuyoshi Suga

Department of Radiology, Yamaguchi University School of Medicine

This paper describes the recent advances in technical and analytical methods in pulmonary ventilation SPECT studies, including a respiratory-gated image acquisition of Technetium-99m (99mTc)-labeled Technegas SPECT, a fusion image between Technegas SPECT and chest CT images created by a fully automatic image registration algorithm, and a three-dimensional (3D) display of xenon-133 (133Xe) gas SPECT data, and new analytical approaches by means of fractal analysis or the coefficient of variations of the pixel counts for Technegas SPECT data. The respiratory-gated image acquisition can partly eliminate problematic effects of the SPECT images obtained during non-breath-hold. The fusion image is available for routine clinical use, and provides complementary information on function and anatomy. The 3D displays of dynamic 133Xe SPECT data are helpful for accurate perception of the anatomic extent and locations of impaired ventilation, and the assessment of the severity of ventilation abnormalities. The new analytical approaches facilitate the objective assessment of the degrees of ventilation abnormalities.

Key words: radionuclide imaging, lung ventilation, single photon emission computed tomography (SPECT), xenon-133 gas, Tc-99m-Technegas

INTRODUCTION

The role of pulmonary single photon emission computed tomography (SPECT) is now increasing in the field of respiratory nuclear medicine, since the evaluation of cross-sectional detail of pulmonary function coupled with morphologic computed tomography (CT) images is essential to understanding the pathophysiology of diseased lungs. Although, to date, technical and analytical methods for pulmonary ventilation SPECT studies have advanced step by step, there is still much room for improvements to facilitate more correct and perceptive interpretation and quantitation of SPECT data. For instance, a respiratory-gated SPECT acquisition can eliminate the problematic effects of the SPECT images obtained during non-breath-hold. A fusion image of functional SPECT and anatomic CT images can provide the complementary information obtained from these images, and aids more accurate interpretation of regional ventilation abnormalities. A three-dimensional (3D) display of SPECT data facilitates the perception of the anatomic extent and locations of abnormally ventilated lung areas, and the assessment of the severity of ventilation abnormalities. This paper describes these recent advances in methods and analytical approaches for ventilation SPECT studies with technetium-99m (99mTc)-labeled Technegas and xenon-133 (133Xe) gas.

(A) Technical Advances in SPECT Data Acquisition

1) A respiratory-gated image acquisition for Tc-99m-Technegas SPECT

Because of the duration over which SPECT scans are acquired, breath-hold images cannot be obtained, resulting in problematic effects of respiratory movements of the lung. To solve this problem, in our institute, we use a respiratory gating system (AZ-733, Anzai Sogyo Co., Osaka, Japan) connected to a triple-headed SPECT unit (GCA 9300 A/PI, Toshiba Medical, Shibaura, Japan), where respiratory movement of the chest wall is monitored by a pressure-sensor placed on the body surface. Tc-99m-Technegas SPECT is one of the suitable
examination methods for respiratory-gated image acquisition, because of the persistent radioactivity in the lungs (the biological half-life = 135 hour).\(^1\)\(^-\)\(^6\) Although the lung radioactivity of the tracer is decreased to approximately one-eighth of that on the conventional summed SPECT images, the respiratory-gated, expiration-phase SPECT images appear to enhance the lesion-to-normal contrast especially in patients with relatively slight airway obstructive changes (Figs. 1, 2). This image is also expected to offer a more reliable fusion image with an anatomical CT image obtained similarly during breath-hold at the tidal inspiration level.

(2) **Fusion of Tc-99m-Technegas SPECT and CT images**
A fusion of functional SPECT and anatomical CT images gives the complementary information obtained from these images, and should facilitate accurate interpretations of SPECT data.\(^7\)\(^-\)\(^8\) Recently we introduced a fusion image software with a fully automatic, multi-modality image registration algorithm to create a fusion image from \(^{99m}\)Tc-Technegas SPECT and chest CT images for routine clinical practice. Technegas SPECT is performed under a respiratory gating in the three-headed SPECT unit (GCA 9300 A/PI, Toshiba Medical, Shibaura, Japan), and the inspiration phase SPECT images are registered with CT images obtained with a multi-detector raw scanner during a single breath hold at a tidal inspiration level. The automatic registration algorithm (ART in GMS 5500 A/DI, Toshiba Medical, Japan) has several attractive features: it is fully automatic and has the potential to be applied to a wide range of registration problems. The fusion is possible when the slice thickness is different from the chest CT scan. It can use multispectral CT images and multiple SPECT images simultaneously, hence using more information in the registration process.\(^9\) The registration algorithm applies a rigid body transformation, and is based on the assumption that a segmentation of the chest CT image into connected components is also reflected in the SPECT image; the individual connected components are mostly composed of voxels from a single tissue type, and therefore the spatially corresponding SPECT voxels are expected to have similar values.\(^9\) After segmentation of the body contours, the voxels inside the thorax are clustered into a set of connected components by using the k-means clustering algorithm (\(k = \) the number of desired classes), and the optimal registration parameters are automatically found by the method of coordinate descent and by minimizing the variance of the SPECT voxel values within each connected component.\(^9\) As shown in Figures 3 and 4, the fusion is usually successful except for the cases with extensive defective areas of the radiotracer. When misregistration with a fully automatic registration occurs in these cases, the manual and visual registration is first done to obtain the pre-registration SPECT images grossly registered with CT images. Thereafter, the automatic registration algorithm usually allows the creation of more accurate fusion images. The registered SPECT and CT image greatly improves the interpretation of the SPECT findings. The locations of reduced Technegas distribution or abnormal hot spots can be easily and accurately seen. These images allow more accurate comparison between

![Fig. 1](image1) Respiratory-gated \(^{99m}\)Tc-Technegas SPECT study in a 41-year-old patient with diffuse panbronchiolitis. The chest CT image (left) at the lung level corresponding to the SPECT plane shows only focal tiny opacities along the peripheral bronchi. Although the conventional summed SPECT image shows heterogeneously-decreased Technegas distribution in both lungs, the ventilation heterogeneity and some of focal ventilation defects are more clearly seen on the matched inspiration and/or expiration phase SPECT images. A linear ventilation defect corresponding to the left major fissure is seen (arrow).

![Fig. 2](image2) Respiratory-gated Technegas SPECT study in a 56-year-old patient with acute bronchiolitis. The chest CT image at the lung level corresponding to the SPECT images shows only focal tiny opacities along the peripheral bronchi. Although the conventional summed SPECT image shows ventilation deficits mainly along the peripheral lung areas, these ventilation deficits are more discrete on the matched inspiration and expiration phase SPECT images (arrows).
function and anatomy in various lung pathologies, and allow more definitive diagnosis than can be obtained by simple visual comparison of the non-registered images (Fig. 3). The additional fusion images with $^{99m}$Tc-macro-aggregated human serum albumin (MAA) perfusion SPECT permit more accurate assessment of the presence or absence of ventilation and perfusion mismatches in patients with suspected pulmonary embolism.

A major obstacle to body image registration arises from the fact that the thorax cannot be considered a rigid body. CT scans are obtained during a single breath-hold, whereas the SPECT images are obtained during quiet respiration. Such issues as respiratory and cardiac motion and the deformable nature of the human torso must be considered to fully address the registration problems. Nevertheless, respiratory diaphragmatic excursion during the tidal breathing is usually only slightly greater than the spatial resolution of the SPECT camera and creates little additional misregistration on fused images; the diaphragm dome usually moves only 1 to 2 cm in healthy supine adults during tidal breathing. Further, the diaphragmatic excursion may even be less in patients with underlying chronic obstructive lung diseases or with poorly compliant, fibrotic lungs. In extreme cases, where SPECT images bear little resemblance to the underlying anatomical CT images because of marked perfusion or ventilation defects, the use of transmission images may be an alternative to be considered.

(3) Dynamic $^{133}$Xe SPECT
Dynamic $^{133}$Xe SPECT is a useful tool for accurately assessing the extent and location of air trapping in lung regions, without superimposition of lung tissues, and is superior to planar imaging study in the sensitive detection of $^{133}$Xe retention in a patient’s lungs. Dynamic $^{133}$Xe SPECT for an equilibrium (EQ) and subsequent washout (WO) phase after inhalation of $^{133}$Xe gas (concentration; 60–72 MBq/liter) is performed in a continuous repetitive rotating acquisition mode with a multi-detector SPECT system. To eliminate the settling time between projections and acquisition of multiple temporal samples of data, each detector is continuously and repeatedly rotated in the clockwise and counterclockwise directions across the same projection arc (Fig. 5). Averaged projection data at the same angle in both directional rotations is used for reconstructing a single SPECT image, so that change in $^{133}$Xe activity in the lungs during the acquisition time is averaged. Dynamic $^{133}$Xe SPECT is an intrinsically quantitative technique which permits the assessment of regional lung ventilation. As in the planar study, regional ventilation can be quantified by calculating $^{133}$Xe half clearance time (T1/2) on a regional basis. There is a good correlation in T1/2 between $^{133}$Xe SPECT and planar studies. Lung perfusion SPECT study with $^{99m}$Tc-MAA is usually coupled with $^{133}$Xe SPECT study.

Dynamic $^{133}$Xe SPECT allows the perception of cross sectional lung pathophysiologies in various lung diseases with airway obstruction. For instance, in patients with a long-term smoking history and relatively advanced emphysema, dynamic $^{133}$Xe SPECT often demonstrates significantly faster $^{133}$Xe clearance in the peripheral lung than in the central lung, accompanied with a well-known,
The majority of these lung zones show central-dominant low attenuation lung area (LAA) distributions on chest CT images. This relative preservation of peripheral lung function may be a characteristic feature in smoking-related pulmonary emphysema, and this difference between peripheral and central lungs in the susceptibility of emphysematous changes can be partly explained by structural differences in pulmonary lobules and by instability of interlobular septa in the central lung.14

Pulmonary dynamic densitometry acquired by spiral CT scanning or by an ultrafast electron-beam CT scanning may allow quantitative estimation of the rapid process of lung density change during respiration, and has been used for detecting ventilation abnormalities.15 But, because lung density on a CT scan is determined not only by air volume but also by lung tissue and blood volume, it is necessary to assess whether lung density change abnormalities on dynamic CT densitometry can correctly reflect regional aeration abnormalities. Our previous comparative study with dynamic 133Xe SPECT indicates that dynamic densitometry acquired by spiral CT scan may be an acceptable approach to detect ventilation abnormalities associated with obstructive airways disorder, as the regional maximal amplitude in lung density change correlated inversely with 133Xe clearance-time in regional lungs (Fig. 7).15

(B) Analytical Advances in Interpretation of SPECT Data

(1) 3D surface-rendering display of 133Xe dynamic SPECT

Interpretation of transaxial images of 133Xe dynamic SPECT study, however, may be often difficult, since the viewer must deal with many washout sequences which show an elimination of 133Xe activity and often lack anatomic detail. To facilitate the interpretation of the data and perception of the anatomic location and extent of 133Xe retention sites, we have developed a single 3D fusion image by using well-established surface-rendering techniques. This 3D image is created from two different time-course image sets of 3D images of the equilibrium (EQ) and 3-min washout (WO) images, where the 3D EQ image delineates the lung contours or volumes, and the 3-min washout image represents 133Xe retention sites (Fig. 8). Volumetric extent of 133Xe retention (air trapping) in regional lung can be quantified by the 133Xe retention index, defined as the ratio (%) of the total numbers of pixels in the segmented 3-min WO image data (volume of areas with 133Xe retention) to those of EQ data (lung volume). Although almost all of the retention sites are seen on the multislice 3-min washout images, the spatial relationships and extent of the retention are more easily and accurately comprehended on this 3D display. This topographic 3D display simplifies the interpretation of multislice data of 133Xe SPECT and facilitates the perception of anatomic distributions of 133Xe retention with geometric realism.16

The interaction between impaired respiratory mechanics and abnormal lung ventilation in patients with obstruc-
tive lung disease can be evaluated by the comparison between 3D $^{133}$Xe dynamic SPECT images and fast magnetic resonance (MR) imaging which directly visualizes regional respiratory diaphragm (D)/chest wall (CW) motions. This analysis appears fundamental to systematic understanding of pathophysiologic compromises in these patients. Our preliminary comparison of regional respiratory mechanics with lung ventilation assessed by these techniques has demonstrated a close interaction between these impairments in patients with pulmonary emphysema (Fig. 8). These patients showed reduced, irregular or asynchronous motions in the thorax with greater $^{133}$Xe retention, with significant decreases in the maximal amplitude of D/CW movement. There were also significant correlations between D/CW motions and %FEV1, and the $^{133}$Xe retention index in each thorax. Furthermore, the removal of $^{133}$Xe retention sites by lung volume reduction surgery (LVRS) effectively and regionally improved D/CW movement.

(2) 3D volume-rendering functional images of $^{133}$Xe dynamic SPECT
The surface-rendering 3D image mentioned above, however, included only the 3-min washout (WO) data to assess ventilation abnormality, and the image feature is heavily dependent on the thresholds chosen. To fully interpret the dynamic $^{133}$Xe SPECT study and to address the deficiencies in the surface-rendering 3D display described above, we have recently developed a volume-rendering 3D image to represent all data from $^{133}$Xe WO process in voxel-by-voxel order in a more useful form as a functional image of lung ventilation (Figs. 9, 10). In these, various ventilation parameters are estimated by applying a height-over-area method to the washout curves in voxel-by-voxel order. The time-activity curves for each pixel in the transaxial slices are fit to a mono-exponential function to determine the mean transit time (MTT) and ventilation rate ($\lambda = 1/\text{MTT}$, time constant). In addition to these parameters, lung volume (EQ data) and $^{133}$Xe retention (3-min WO data) are reconstructed into realistic and quantitatively accurate 3D images, by a volume-rendering technique. The cross-sectional functional images are also simultaneously displayed at any selected, orthogonal lung planes (Figs. 9, 10). These functional 3D images permit full interpretation of a $^{133}$Xe SPECT study, and contribute to better perception of regional ventilation impairment.

A $^{133}$Xe dynamic SPECT study, which effectively detects poorly ventilated lung areas with air trapping, is useful and logical for selecting the target lung tissue for thoracoscopic lung volume reduction surgery (LVRS), because multiple resections of the most overdistended, poorly ventilated lung tissues with air trapping is the principle of LVRS. $^{133}$Xe SPECT makes it
possible to efficiently and adequately localize the most affected areas even in LVRS-candidates with widely or homogeneously spreading nonbullous emphysematous tissues on chest CT scan. The topographic 3D displays of \(^{133}\text{Xe}\) SPECT mentioned here appear to be very useful for selecting resection targets for LVRS, and for evaluating the treatment effects on regional ventilation\(^{19,20}\).

\(3\) New analytical approaches for Technegas SPECT

New quantitative approaches by means of a fractal analysis\(^{24}\) or the coefficient of variation (CV) of the pixel counts\(^{25}\) have recently been introduced for objective evaluation of inhomogeneity in ventilation SPECT with
Technegas. In the fractal analysis, the number of pixels delineated with several adequate cut-off levels of maximal pixel intensity are measured to derive the fractal dimension and to evaluate the heterogeneity of radioaerosol distribution. The analysis of the CV within and between small lung elements in Technegas ventilation SPECT and parametric images of micro-level CV values appears useful to assess and visualize the localization and severity of regional inhomogeneity. Although Technegas distribution may not reflect ventilation distribution perfectly because of its aerosol properties in some cases, these new analytical approaches can provide information on the overall ventilation inhomogeneity, and represent one step in the development of quantification of the SPECT technique with the aim of achieving functional tomography.

In conclusion, this paper described the recent advances in the methodological and analytical approaches for pulmonary ventilation SPECT studies with Technegas and $^{133}$Xe gas. These advances will contribute to provide more accurate and perceptive interpretation of SPECT data, and will enhance the role of SPECT studies in the field of respiratory medicine.

ACKNOWLEDGMENTS

Part of $^{133}$Xe dynamic SPECT study was supported by a Grant for Scientific Research (08671033) from the Japanese Ministry of Education, Science, Sports & Culture.

REFERENCES

