INTRODUCTION

The prognosis of patients with acute myocardial infarction (AMI) has improved with reperfusion therapy.\(^1\)–\(^3\) Even with successful reperfusion therapy, myocardium may be stunned and regional wall motion in the infarcted area is decreased.\(^4\)–\(^6\) In patients with AMI, it is clinically important to distinguish viable from nonviable myocardium to predict whether regional wall motion will eventually improve. Positron emission tomography (PET) is considered the gold standard for assessing myocardial viability, but alternative procedures based on radionuclide imaging have been proposed. \(^201\)Tl myocardial scintigraphy has been widely used to detect myocardial viability based on late redistribution\(^7\) or assessed using a reinjection imaging technique\(^8,9\) in patients with coronary artery disease. A recent study by Tartagni\(^10\) described a new method for cardiac imaging after infusion of \(^201\)Tl, insulin, and potassium in a glucose solution, which improves the detection of viable myocardium. Insulin augments myocardial uptake of potassium through translocation of Na-K ATPase from the cytosol to the sarcolemma.\(^11\)\(^,\)\(^12\) In a similar fashion, \(^201\)Tl is taken up by...
the myocardium via Na-K ATPase,13,14 and its uptake is also enhanced by insulin. However, the effectiveness of 201Tl imaging after the infusion of 201Tl with glucose-insulin-potassium (GIK) has not been established, because there are no reports comparing the technique with 18F-fluorodeoxyglucose (18F-FDG)-PET, which is regarded as the gold standard to evaluate myocardial viability.

The aim of this study was to evaluate whether GIK-201Tl can be used to detect myocardial viability in patients with AMI, comparing the technique with 18F-FDG-PET.

MATERIALS AND METHODS

Patients
The study population comprised 21 patients (15 men, 6 women; 46 to 75 years of age, mean age: 62 ± 9 years) with initial AMI who had undergone successful percutaneous coronary intervention (PCI) with or without stenting within 6 h of the onset of symptoms. The diagnosis of AMI was based on the following criteria: acute chest pain lasting ≥ 30 min, serum creatine kinase activity over ≥ 500 IU, and the development of abnormal electrocardiographic Q waves.

Patients who fulfilled the following criteria were included in the statistical analysis: successful PCI with angiographic confirmation of ≤ 25% residual stenosis, no significant stenosis in other vessels, good image quality for all radiotracer studies during the subacute period and no restenosis based on coronary angiography (CAG) 3 weeks after admission. Patients with diabetes or glucose intolerance were excluded from the study. Glucose intolerance was defined as a fasting glucose concentration >110 mg/dl but <126 mg/dl, or a glucose concentration 2 h after a 75 g glucose load >140 mg/dl but <200 mg/dl. The infarct-related vessel was the left anterior descending coronary artery in 14 patients, the left circumflex artery in 3 patients, and the right coronary artery in 4 patients. Mean ejection fraction was 42 ± 10% based on left ventriculography (LVG) performed during the admission.

Study Protocol
The scintigraphic studies used were the resting 201Tl and 99mTc-pyrophosphate (PYP) dual SPECT and 201Tl-SPECT after infusion 201Tl with glucose-insulin-potassium (201Tl-GIK SPECT), which were performed within 10 days after admission. 18F-FDG-PET was performed 3 weeks after admission. All of the scintigraphic studies were performed after a 12-h overnight fast in the absence of antianginal medication. Coronary angiography (CAG) and LVG were performed within 3 weeks after admission. All patients gave informed consent in accordance with the guidelines of our hospital’s Human Clinical Study Committee prior to participation in the study.

Resting 201Tl and 99mTc-PYP Dual SPECT
Each patient received 740 MBq of 99mTc-pyrophosphate intravenously and then 111 MBq of 201Tl 2 hours later. Fifteen minutes after 201Tl injection, all patients underwent myocardial imaging with dual SPECT.

Glucose-Insulin 201Tl SPECT
Within 2 or 3 days after resting 201Tl and 99mTc-PYP dual SPECT, 201Tl-GIK SPECT was performed 15 min after a 30-minute infusion of 250 mL of 10% glucose plus insulin (5 U) and 10 mEq potassium chloride labeled with 201Tl (111 MBq). The infusion rate was adjusted using an automatic pump.

Myocardial SPECT Imaging
Myocardial SPECT imaging was performed using a PRISM3000 (PICKER, Cleveland, OH) three-headed SPECT system with low-energy, high-resolution, parallel-hole collimators. The detector system was interfaced to a dedicated nuclear medicine computer. A total of 60 projection images were obtained over a 360° arc in 6° increments, with 40 sec/view acquisitions for 201Tl and GIK-201Tl. The energy discriminator was centered on 72 keV for 201Tl with a 30% window and 140 keV for 99mTc-PYP with a 15% window. The other energy discriminator was centered on 90 keV with 10% window for crosstalk correction.15,16 The data were recorded in 128 × 128 matrices on a magnetic disk. To reconstruct transaxial tomographic images from each acquisition, Butterworth (order: 8, cutoff frequency: 0.15–0.17 cycle/pixel) and ramp filters were used. Short- and long-axis slices (3.2 mm thick), were generated. Subsequently, three serial slices (9.6 mm thick) of the SPECT images were added.

Myocardial PET Image
18F-FDG (370 MBq) was injected intravenously 30 min after oral glucose (1 g/kg) loading. Fifty minutes later, PET scans were performed for 10 min per bed position. A dedicated PET camera (SET-2400W; Shimadzu Corporation, Kyoto, Japan) was used for FDG PET imaging. This camera has a 20 cm axial rectangular field of view (FOV) and a 59.5 cm transaxial FOV, and consists of 32 rings of 21, 504 bismuth germanate (BGO) crystals, giving 63 2D imaging planes. A coincidence time window of 15 ns was used. Position non-linearity and energy non-uniformity of the detector unit were corrected in real time. In the 2D mode, the axial coincidence path acceptance can be controlled from 1 to 8 detectors to optimize sensitivity and axial resolution. The system has 1 mm thick and 55 mm long content septa for the 2D mode. Sixty-three sinograms were stored in a large scale acquisition memory (1 GB) in the 2D mode. A dead time correction and physical decay correction for the radioisotope were performed in real time. A 68Ge-68Ga external rod source (185 MBq) rotated in a 640 mm radius to obtain blank scan and transmission scan data. Simultaneous transmission-
emission scans were performed in the SET-2400 PET scanner.17

Analysis of SPECT and PET Image
SPECT and PET analysis was based on one vertical long-axis slice and three short-axis slices for each study. In each patient, the corresponding vertical long- and short-axis tomograms from the 201Tl, 201Tl-GIK, 99mTc-PYP SPECT and 18F-FDG-PET image sets were aligned. Additionally, one vertical long-axis slice and three short-axis views from the apical, middle, and basal ventricular levels were chosen for comparison. The vertical long-axis slice was used to evaluate the apical region, which was divided into two segments, while each short-axis slice was divided into six segments. Two experienced observers who were unaware of the patients' clinical history analyzed all SPECT and PET images. Semiquantitative visual analysis was performed by assigning regional tracer uptake activities using a four-point scoring system (uptake score): 0 = absent, 1 = severely reduced uptake, 2 = mildly reduced uptake, and 3 = normal uptake. Disagreements in interpretation were resolved by consensus. We defined the number of segments with reduced uptake (uptake score ≤ 2) as the extent score (ES), which was compared with the number of segments demonstrating 99mTc-PYP uptake. We defined the sum of the uptake scores in the infarcted area where 99mTc-PYP was accumulated as the regional uptake score (RUS). The 99mTc-PYP uptake segments were defined as the segments that could be visually confirmed.

Left Ventriculography
Left ventriculography was performed in the 30° right anterior oblique projection (RAO) with the patient in the supine position.
Statistical Analysis
All data are presented as the mean ± SD. ANOVA was used to determine differences between values. A p value < 0.05 was considered statistically significant.

RESULTS
The extent scores for the different imagings modalities are shown in Figure 1. The number of 99mTc-PYP uptake segments and the extent scores for resting 201Tl, GIK-201Tl and 18F-FDG-PET imagings were 9.6 ± 4.2, 8.3 ± 4.4, 6.0 ± 4.6 and 5.5 ± 3.6, respectively. The ES for GIK-201Tl and 18F-FDG-PET imagings were significantly lower than the number of 99mTc-PYP uptake segments.

The regional uptake scores for the different imaging modalities are shown in Figure 2. The regional uptake scores for resting 201Tl, GIK-201Tl and 18F-FDG-PET images were 8.8 ± 5.7, 16.3 ± 7.5 and 18.8 ± 8.4, respectively. The values for GIK-201Tl and 18F-FDG-PET images were significantly higher than for resting 201Tl imaging.

Figure 3 illustrates a representative case. A 60-year-old man with an acute anterior myocardial infarction, whose culprit lesion was the proximal left anterior descending artery, had successful reperfusion therapy 5 h after the onset of symptoms. The maximum CK activity was 3145 IU/l.

DISCUSSION
Direct PCI is performed to treat acute myocardial infarction.5,11,12 The success rate of reperfusion therapy is high, and the time to reperfusion is short, with a high degree of myocardial salvage. From the acute phase to the subacute phase, it is difficult to evaluate accurately the amount of myocardium that is salvaged because of stunning.1–6

The identification of salvaged myocardium was based on the overlap phenomenon using conventional dual 201Tl and 99mTc-PYP SPECT images obtained during the acute phase of AMI.18,19 In identifying the area of myocardial infarction, there is accumulation of 99mTc-PYP and increased accumulation of 123I-BMIPP and 123I-MIBG, which are considered memory markers.20–23 There is another method for assessing the infarcted area, based on identifying the area at risk. In this method, 99mTc-MIBI or 99mTc-tetrofosmin is injected just before reperfusion therapy24 and SPECT imaging is obtained after reperfusion therapy. However, 201Tl or 99mTc perfusion imagings underestimate the amount of salvaged myocardium because myocardial perfusion is improved on follow-up perfusion imaging.

Furthermore, myocardial contractile dysfunction in patients with AMI can be caused either by cellular necrosis or stunning. In contrast to necrotic tissue, stunned myocardium may recover. Therefore, it is clinically important to differentiate viable from necrotic myocardium.

Myocardial viability is determined by 18F-FDG PET on the basis of preserved metabolic activity, irrespective of hypoperfusion or the presence of abnormal wall motion at rest. In patients with chronic coronary artery disease, a mismatch pattern between perfusion and 18F-FDG images indicates the presence of ischemic or hibernating myocardium23,24 with a high probability of recovery of contractile function after revascularization.25,26 However, 18F-FDG uptake does not always identify viable myocardium in patients with AMI because 18F-FDG can gather in inflammatory cells in the infarcted area during the acute phase of AMI.28–30 That is the reason why we obtained 18F-FDG images 3 weeks after the onset of AMI.

Several studies have shown that insulin augments myocardial 201Tl uptake.10,31 Because of similarities between 201Tl and potassium kinetics,32,33 201Tl uptake may be affected by insulin administration. Insulin increases myocardial potassium turnover independent of metabolic changes.34,35 This phenomenon may be exploited to detect hypoperfused but viable myocardium, because insulin administration before or during 201Tl infusion promotes 201Tl cellular uptake, especially in severely ischemic regions.31 Insulin increases the membrane conductance of cations by activation of the Na K ATP-sensitive pump36 with passive 201Tl influx as a consequence of sodium efflux. This is the rationale behind the development of the GIK-201Tl infusion method. GIK-201Tl myocardial scintigraphy has been reported to be useful for evaluating hibernating myocardium after remote myocardial infarction.

In this study, we determined whether GIK-201Tl myocardial scintigraphy could be used in the evaluation of salvaged myocardium after reperfusion, especially when compared with 18F-FDG imaging. Based on the results of this study, the extent scores for GIK-201Tl and 18F-FDG PET imaging were smaller than the number of 99mTc-PYP imaging uptake segments. The regional uptake scores for GIK-201Tl and 18F-FDG PET were greater than the regional uptake score for resting 201Tl imaging. Judging from the above results, resting 201Tl imaging would underestimate the amount of salvaged myocardium. However, the extent and regional uptake scores for GIK-201Tl imaging were similar to the extent and regional uptake scores for 18F-FDG PET imaging. GIK-201Tl imaging is useful in the evaluation of salvaged myocardium, specifically stunned myocardium in the subacute period of AMI.

In this study, patients with diabetes or glucose intolerance were excluded out of concern that the clinical data of these patients would affect the outcome. Of course, it is possible to perform FDG-PET using the insulin clamp method and GIK-201Tl imaging by the adjustment of the insulin quantity in patients with diabetes or glucose intolerance.

Changes in plasma serum glucose, insulin and potassium concentrations could be problematic in this study. In
decreased over the following 30 min to 126 ± 44 mg/dl. The potassium concentrations were not affected by this infusion (4.3 ± 0.4 mEq/l at baseline vs. 4.3 ± 0.4 mEq/l after GIK infusion). Based on these results, we determined that parenteral potassium chloride supplementation is safe.

Several limitations of this study should be considered. First, we obtained images following reperfusion therapy from a limited number of patients with AMI. Nonetheless, our findings strongly suggest that GIK-201Tl imaging enhances the detection of viable myocardium after reperfusion. Secondly, because we have no follow-up data, we cannot comment on the improvement in regional wall motion. Third, 18F-FDG imaging was acquired 3 weeks after the onset of AMI, while SPECT imaging was performed earlier. 18F-FDG imaging cannot evaluate myocardial viability during the acute phase of AMI, because 18F-FDG can accumulate in inflammatory cells in the infarcted area during that period. However, stunned myocardium might recover to some extent during that time.

CONCLUSION

201Tl imaging after GIK is useful in the detection of myocardial viability in patients with acute myocardial infarction. Furthermore, this modality is equivalent to 18F-FDG-PET imaging.

REFERENCES


